Skip to content

读 dotnet 源代码 为何 Thread.Sleep 半毫秒和一毫秒等待时间差距如此之大

Updated: at 00:26,Created: at 23:12

本文记录我读 dotnet 的源代码了解到为什么调用 Thread.Sleep 的时候,传入的是不足一毫秒,如半毫秒时或 0.99 毫秒,与传入是一毫秒时,两者的等待时间差距非常大

大概如下的代码,分别进行两次传入给 Thread.Sleep 不同等待时间的循环测试。其中一次传入的是 0.99 毫秒,一次传入的是 1 毫秒

using System.Diagnostics;
var stopwatch = Stopwatch.StartNew();
for (int i = 0; i < 1000; i++)
{
Thread.Sleep(TimeSpan.FromMilliseconds(0.99));
}
stopwatch.Stop();
Console.WriteLine($"耗时:{stopwatch.ElapsedMilliseconds}ms");
stopwatch.Restart();
for (int i = 0; i < 1000; i++)
{
Thread.Sleep(TimeSpan.FromMilliseconds(1));
}
Console.WriteLine($"耗时:{stopwatch.ElapsedMilliseconds}ms");

在我的设备上运行的输出内容如下

耗时:0ms
耗时:15665ms

通过如上代码可以看到传入 0.99 毫秒时,居然接近统计不出来其耗时

而传入 1 毫秒时,由于在 Windows 下的最低 Thread.Sleep 时间大概在 15-16毫秒 左右,于是差不多是 15 秒左右的时间,这是符合预期的。即写入 Thread.Sleep(TimeSpan.FromMilliseconds(1)); 也可能差不多等待 15 毫秒的量程时间

那为什么 0.99 毫秒和 1 毫秒只差大概 0.1 毫秒的时间,却在等待过程中有如此长的时间差距

通过阅读 dotnet 的源代码,可以看到 Thread.Sleep 的实现代码大概如下

namespace System.Threading
{
public sealed partial class Thread
{
... // 忽略其他代码
public static void Sleep(TimeSpan timeout) => Sleep(WaitHandle.ToTimeoutMilliseconds(timeout));
}
}
namespace System.Threading
{
public abstract partial class WaitHandle : MarshalByRefObject, IDisposable
{
internal static int ToTimeoutMilliseconds(TimeSpan timeout)
{
long timeoutMilliseconds = (long)timeout.TotalMilliseconds;
... // 忽略其他代码
return (int)timeoutMilliseconds;
}
... // 忽略其他代码
}
}

通过以上可以可见,这是直接将 TotalMilliseconds 强行转换为 int 类型,换句话说就是不到 1 毫秒的,都会被转换为 0 毫秒的值

于是即使是 0.99 毫秒,在这里的转换之下,依然会返回 0 毫秒回去

而 Thread.Sleep 底层里面专门为传入 0 毫秒做了特殊处理,将会进入自旋逻辑。大家都知道,进入自旋时,自旋的速度是非常快的 将会直接出让线程执行时间片。也就是说假设系统给当前线程分配了 10 毫秒的执行时间,当前线程执行到 Thread.Sleep 之前,只花了 5 毫秒,当执行了 Thread.Sleep 将会直接让线程出让执行权,无论线程还剩余多少可执行时间。出让之后线程会重新加入调度,这个过程也是非常快速的。在 dotnet 里面的自旋 SpinWait 辅助类里面,是对 Thread.Sleep 和 Thread.Yield 之间的封装,确保不会进入长时间的自旋而导致影响系统整体运行

从狭义的自旋锁定义上看,自旋锁要求线程在这一过程中保持执行。因此自旋锁从定义上和 Thread.Sleep 会出让的行为是冲突的。但是在工程上,实现“自旋”概念的行为时,却会间断采用 Thread.Sleep(0) 等出让的方式,用于减少 CPU 的空转,如以下的 dotnet 源代码所示

public void SpinOnce(int sleep1Threshold)
{
ArgumentOutOfRangeException.ThrowIfLessThan(sleep1Threshold, -1);
if (sleep1Threshold >= 0 && sleep1Threshold < YieldThreshold)
{
sleep1Threshold = YieldThreshold;
}
SpinOnceCore(sleep1Threshold);
}
private void SpinOnceCore(int sleep1Threshold)
{
Debug.Assert(sleep1Threshold >= -1);
Debug.Assert(sleep1Threshold < 0 || sleep1Threshold >= YieldThreshold);
// (_count - YieldThreshold) % 2 == 0: The purpose of this check is to interleave Thread.Yield/Sleep(0) with
// Thread.SpinWait. Otherwise, the following issues occur:
// - When there are no threads to switch to, Yield and Sleep(0) become no-op and it turns the spin loop into a
// busy-spin that may quickly reach the max spin count and cause the thread to enter a wait state, or may
// just busy-spin for longer than desired before a Sleep(1). Completing the spin loop too early can cause
// excessive context switcing if a wait follows, and entering the Sleep(1) stage too early can cause
// excessive delays.
// - If there are multiple threads doing Yield and Sleep(0) (typically from the same spin loop due to
// contention), they may switch between one another, delaying work that can make progress.
if ((
_count >= YieldThreshold &&
((_count >= sleep1Threshold && sleep1Threshold >= 0) || (_count - YieldThreshold) % 2 == 0)
) ||
Environment.IsSingleProcessor)
{
//
// We must yield.
//
// We prefer to call Thread.Yield first, triggering a SwitchToThread. This
// unfortunately doesn't consider all runnable threads on all OS SKUs. In
// some cases, it may only consult the runnable threads whose ideal processor
// is the one currently executing code. Thus we occasionally issue a call to
// Sleep(0), which considers all runnable threads at equal priority. Even this
// is insufficient since we may be spin waiting for lower priority threads to
// execute; we therefore must call Sleep(1) once in a while too, which considers
// all runnable threads, regardless of ideal processor and priority, but may
// remove the thread from the scheduler's queue for 10+ms, if the system is
// configured to use the (default) coarse-grained system timer.
//
if (_count >= sleep1Threshold && sleep1Threshold >= 0)
{
Thread.Sleep(1);
}
else
{
int yieldsSoFar = _count >= YieldThreshold ? (_count - YieldThreshold) / 2 : _count;
if ((yieldsSoFar % Sleep0EveryHowManyYields) == (Sleep0EveryHowManyYields - 1))
{
Thread.Sleep(0);
}
else
{
Thread.Yield();
}
}
}
else
{
//
// Otherwise, we will spin.
//
// We do this using the CLR's SpinWait API, which is just a busy loop that
// issues YIELD/PAUSE instructions to ensure multi-threaded CPUs can react
// intelligently to avoid starving. (These are NOOPs on other CPUs.) We
// choose a number for the loop iteration count such that each successive
// call spins for longer, to reduce cache contention. We cap the total
// number of spins we are willing to tolerate to reduce delay to the caller,
// since we expect most callers will eventually block anyway.
//
// Also, cap the maximum spin count to a value such that many thousands of CPU cycles would not be wasted doing
// the equivalent of YieldProcessor(), as at that point SwitchToThread/Sleep(0) are more likely to be able to
// allow other useful work to run. Long YieldProcessor() loops can help to reduce contention, but Sleep(1) is
// usually better for that.
int n = Thread.OptimalMaxSpinWaitsPerSpinIteration;
if (_count <= 30 && (1 << _count) < n)
{
n = 1 << _count;
}
Thread.SpinWait(n);
}
// Finally, increment our spin counter.
_count = (_count == int.MaxValue ? YieldThreshold : _count + 1);
}

以上的代码虽然是写在 SpinOnce 里面,但不意味着一定会占用着 CPU 进行空跑,而是会根据其等待时间决定是否将线程切出去,从而最大化利用系统资源

通过上文的分析,可以看到 Thread.Sleep(TimeSpan.FromMilliseconds(0.99)); 代码和 Thread.Sleep(0) 在执行上等价的,意味着第一次只执行了一千次自旋线程出让,自然就几乎测试不出来耗时了

在 Windows 下的 Thread.Sleep 底层代码是写在 Thread.Windows.cs 代码里的,实现如下

namespace System.Threading
{
public sealed partial class Thread
{
internal static void UninterruptibleSleep0() => Interop.Kernel32.Sleep(0);
#if !CORECLR
private static void SleepInternal(int millisecondsTimeout)
{
Debug.Assert(millisecondsTimeout >= -1);
Interop.Kernel32.Sleep((uint)millisecondsTimeout);
}
#endif
... // 忽略其他代码
}
}

如上面代码,底层为 Kernel32 的 Sleep 函数,如官方文档所述,传入 0 是特殊的实现逻辑

If you specify 0 milliseconds, the thread will relinquish the remainder of its time slice but remain ready.

因此如果在 Thread.Sleep 方法里面传入的 TimeSpan 不足一毫秒,那就和传入 0 毫秒是相同的执行逻辑

更多基础技术博客,请参阅 博客导航


知识共享许可协议

原文链接: http://blog.lindexi.com/post/%E8%AF%BB-dotnet-%E6%BA%90%E4%BB%A3%E7%A0%81-%E4%B8%BA%E4%BD%95-Thread.Sleep-%E5%8D%8A%E6%AF%AB%E7%A7%92%E5%92%8C%E4%B8%80%E6%AF%AB%E7%A7%92%E7%AD%89%E5%BE%85%E6%97%B6%E9%97%B4%E5%B7%AE%E8%B7%9D%E5%A6%82%E6%AD%A4%E4%B9%8B%E5%A4%A7

本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。 欢迎转载、使用、重新发布,但务必保留文章署名 林德熙 (包含链接: https://blog.lindexi.com ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我 联系