本文记录我读 dotnet 的源代码了解到为什么调用 Thread.Sleep 的时候,传入的是不足一毫秒,如半毫秒时或 0.99 毫秒,与传入是一毫秒时,两者的等待时间差距非常大
大概如下的代码,分别进行两次传入给 Thread.Sleep 不同等待时间的循环测试。其中一次传入的是 0.99 毫秒,一次传入的是 1 毫秒
using System.Diagnostics;
var stopwatch = Stopwatch.StartNew();
for (int i = 0; i < 1000; i++){ Thread.Sleep(TimeSpan.FromMilliseconds(0.99));}
stopwatch.Stop();
Console.WriteLine($"耗时:{stopwatch.ElapsedMilliseconds}ms");
stopwatch.Restart();for (int i = 0; i < 1000; i++){ Thread.Sleep(TimeSpan.FromMilliseconds(1));}Console.WriteLine($"耗时:{stopwatch.ElapsedMilliseconds}ms");
在我的设备上运行的输出内容如下
耗时:0ms耗时:15665ms
通过如上代码可以看到传入 0.99 毫秒时,居然接近统计不出来其耗时
而传入 1 毫秒时,由于在 Windows 下的最低 Thread.Sleep 时间大概在 15-16毫秒 左右,于是差不多是 15 秒左右的时间,这是符合预期的。即写入 Thread.Sleep(TimeSpan.FromMilliseconds(1));
也可能差不多等待 15 毫秒的量程时间
那为什么 0.99 毫秒和 1 毫秒只差大概 0.1 毫秒的时间,却在等待过程中有如此长的时间差距
通过阅读 dotnet 的源代码,可以看到 Thread.Sleep 的实现代码大概如下
namespace System.Threading{ public sealed partial class Thread { ... // 忽略其他代码 public static void Sleep(TimeSpan timeout) => Sleep(WaitHandle.ToTimeoutMilliseconds(timeout)); }}
namespace System.Threading{ public abstract partial class WaitHandle : MarshalByRefObject, IDisposable { internal static int ToTimeoutMilliseconds(TimeSpan timeout) { long timeoutMilliseconds = (long)timeout.TotalMilliseconds; ... // 忽略其他代码 return (int)timeoutMilliseconds; } ... // 忽略其他代码 }}
通过以上可以可见,这是直接将 TotalMilliseconds 强行转换为 int 类型,换句话说就是不到 1 毫秒的,都会被转换为 0 毫秒的值
于是即使是 0.99 毫秒,在这里的转换之下,依然会返回 0 毫秒回去
而 Thread.Sleep 底层里面专门为传入 0 毫秒做了特殊处理,将会进入自旋逻辑。大家都知道,进入自旋时,自旋的速度是非常快的 将会直接出让线程执行时间片。也就是说假设系统给当前线程分配了 10 毫秒的执行时间,当前线程执行到 Thread.Sleep 之前,只花了 5 毫秒,当执行了 Thread.Sleep 将会直接让线程出让执行权,无论线程还剩余多少可执行时间。出让之后线程会重新加入调度,这个过程也是非常快速的。在 dotnet 里面的自旋 SpinWait 辅助类里面,是对 Thread.Sleep 和 Thread.Yield 之间的封装,确保不会进入长时间的自旋而导致影响系统整体运行
从狭义的自旋锁定义上看,自旋锁要求线程在这一过程中保持执行。因此自旋锁从定义上和 Thread.Sleep 会出让的行为是冲突的。但是在工程上,实现“自旋”概念的行为时,却会间断采用 Thread.Sleep(0)
等出让的方式,用于减少 CPU 的空转,如以下的 dotnet 源代码所示
public void SpinOnce(int sleep1Threshold) { ArgumentOutOfRangeException.ThrowIfLessThan(sleep1Threshold, -1);
if (sleep1Threshold >= 0 && sleep1Threshold < YieldThreshold) { sleep1Threshold = YieldThreshold; }
SpinOnceCore(sleep1Threshold); }
private void SpinOnceCore(int sleep1Threshold) { Debug.Assert(sleep1Threshold >= -1); Debug.Assert(sleep1Threshold < 0 || sleep1Threshold >= YieldThreshold);
// (_count - YieldThreshold) % 2 == 0: The purpose of this check is to interleave Thread.Yield/Sleep(0) with // Thread.SpinWait. Otherwise, the following issues occur: // - When there are no threads to switch to, Yield and Sleep(0) become no-op and it turns the spin loop into a // busy-spin that may quickly reach the max spin count and cause the thread to enter a wait state, or may // just busy-spin for longer than desired before a Sleep(1). Completing the spin loop too early can cause // excessive context switcing if a wait follows, and entering the Sleep(1) stage too early can cause // excessive delays. // - If there are multiple threads doing Yield and Sleep(0) (typically from the same spin loop due to // contention), they may switch between one another, delaying work that can make progress. if (( _count >= YieldThreshold && ((_count >= sleep1Threshold && sleep1Threshold >= 0) || (_count - YieldThreshold) % 2 == 0) ) || Environment.IsSingleProcessor) { // // We must yield. // // We prefer to call Thread.Yield first, triggering a SwitchToThread. This // unfortunately doesn't consider all runnable threads on all OS SKUs. In // some cases, it may only consult the runnable threads whose ideal processor // is the one currently executing code. Thus we occasionally issue a call to // Sleep(0), which considers all runnable threads at equal priority. Even this // is insufficient since we may be spin waiting for lower priority threads to // execute; we therefore must call Sleep(1) once in a while too, which considers // all runnable threads, regardless of ideal processor and priority, but may // remove the thread from the scheduler's queue for 10+ms, if the system is // configured to use the (default) coarse-grained system timer. //
if (_count >= sleep1Threshold && sleep1Threshold >= 0) { Thread.Sleep(1); } else { int yieldsSoFar = _count >= YieldThreshold ? (_count - YieldThreshold) / 2 : _count; if ((yieldsSoFar % Sleep0EveryHowManyYields) == (Sleep0EveryHowManyYields - 1)) { Thread.Sleep(0); } else { Thread.Yield(); } } } else { // // Otherwise, we will spin. // // We do this using the CLR's SpinWait API, which is just a busy loop that // issues YIELD/PAUSE instructions to ensure multi-threaded CPUs can react // intelligently to avoid starving. (These are NOOPs on other CPUs.) We // choose a number for the loop iteration count such that each successive // call spins for longer, to reduce cache contention. We cap the total // number of spins we are willing to tolerate to reduce delay to the caller, // since we expect most callers will eventually block anyway. // // Also, cap the maximum spin count to a value such that many thousands of CPU cycles would not be wasted doing // the equivalent of YieldProcessor(), as at that point SwitchToThread/Sleep(0) are more likely to be able to // allow other useful work to run. Long YieldProcessor() loops can help to reduce contention, but Sleep(1) is // usually better for that. int n = Thread.OptimalMaxSpinWaitsPerSpinIteration; if (_count <= 30 && (1 << _count) < n) { n = 1 << _count; } Thread.SpinWait(n); }
// Finally, increment our spin counter. _count = (_count == int.MaxValue ? YieldThreshold : _count + 1); }
以上的代码虽然是写在 SpinOnce 里面,但不意味着一定会占用着 CPU 进行空跑,而是会根据其等待时间决定是否将线程切出去,从而最大化利用系统资源
通过上文的分析,可以看到 Thread.Sleep(TimeSpan.FromMilliseconds(0.99));
代码和 Thread.Sleep(0)
在执行上等价的,意味着第一次只执行了一千次自旋线程出让,自然就几乎测试不出来耗时了
在 Windows 下的 Thread.Sleep 底层代码是写在 Thread.Windows.cs 代码里的,实现如下
namespace System.Threading{ public sealed partial class Thread { internal static void UninterruptibleSleep0() => Interop.Kernel32.Sleep(0);
#if !CORECLR private static void SleepInternal(int millisecondsTimeout) { Debug.Assert(millisecondsTimeout >= -1); Interop.Kernel32.Sleep((uint)millisecondsTimeout); }#endif
... // 忽略其他代码 }}
如上面代码,底层为 Kernel32 的 Sleep 函数,如官方文档所述,传入 0 是特殊的实现逻辑
If you specify 0 milliseconds, the thread will relinquish the remainder of its time slice but remain ready.
因此如果在 Thread.Sleep 方法里面传入的 TimeSpan 不足一毫秒,那就和传入 0 毫秒是相同的执行逻辑
更多基础技术博客,请参阅 博客导航

本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。 欢迎转载、使用、重新发布,但务必保留文章署名 林德熙 (包含链接: https://blog.lindexi.com ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我 联系。